
COP4610: Operating Systems
Xv6 Scheduling

Zhi Wang

Florida State University

Spring 2015

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 1 / 8

Scheduling Overview

Xv6 Scheduling

Xv6 supports preemptive scheduling
à process waiting for I/O, or for child to exit, or waiting in sleep
à a timer periodically forces a context switch (freq = 100 ticks/s)
Xv6 implements a round-robin scheduler

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 2 / 8

Scheduling Overview

Xv6 performs context switch in two steps
à a process’s kernel thread to the current CPU’s scheduler thread
à the scheduler thread picks the next process for execution, and
switches to the selected process
Context switch is implemented in swtch.s
à void swtch(struct context **old, struct context *new);

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 3 / 8

Scheduling Overview

Struct Conext (proc.h)

// Saved registers for kernel context switches. Don’t need to save all the
// segment registers (%cs, etc), because they are constant across kernel
// contexts. Don’t need to save %eax, %ecx, %edx, because the x86
// convention is that the caller has saved them. Contexts are stored at
// the bottom of the stack they describe; the stack pointer is the address
// of the context. The layout of the context matches the layout of the
// stack in swtch.S at the "Switch stacks" comment. Switch doesn’t save
// eip explicitly, but it is on the stack and allocproc() manipulates it.
struct context {

uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;

};

Struct context normally sits at the top of the stack
à the parameters of swtch point to the top of the stack

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 4 / 8

Scheduling Overview

Swtch (swtch.s)

.globl swtch # Switch stacks
swtch: movl %esp, (%eax)
movl 4(%esp), %eax movl %edx, %esp
movl 8(%esp), %edx

Save old callee-save registers # Load new callee-save registers
pushl %ebp popl %edi
pushl %ebx popl %esi
pushl %esi popl %ebx
pushl %edi popl %ebp

ret

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 5 / 8

Scheduling Overview

Scheduler

Each CPU has its own scheduler kernel thread (scheduler)
à each CPU executes scheduler after initialization (in mpmain)
Context switches in Xv6 are performed in two steps
à current process →scheduler (in sched function)
à scheduler →the next process (in schduler function)

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 6 / 8

Scheduling Overview

Scheduler (Continued)

Scheduler loops through the ptable to select the next process
à a round-robin scheduling algorithm
It calls swtch to switch to the kernel thread of the next process
à kernel stack and the registers are saved and restored
à swtch returns when the running process calls sched to switch to
the scheduler
A process can call yield to voluntarily give up CPU
à a running process yields to other processes in the timer interrupt
handler for preemptive scheduling (trap.c)

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 7 / 8

Scheduling Overview

Project 2: Priority-based Schduler for Xv6

Goal: to implement a priority-based scheduler for Xv6
Steps:
à add a system call to set the priority of a process (see project 1)
à change the scheduler function to select the process with the
highest priority
Requirements:
à correctly use the ptable lock (follow the current scheduler)
à “if there are multiple processes with the same highest priority, the
scheduler uses round-robin to execute them in turn to avoid
starvation.”

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 8 / 8

	Scheduling Overview

