Zhi Wang (FSU)

COP4610: Operating Systems
Xv6 Scheduling

Zhi Wang
Florida State University

Spring 2015

COP4610: Operating Systems

Spring 2015

1/8

Xv6 Scheduling

@ Xvb supports preemptive scheduling
m process waiting for 1/0, or for child to exit, or waiting in sleep
w3 timer periodically forces a context switch (freq = 100 ticks/s)

@ Xvb6 implements a round-robin scheduler

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 2/8

Scheduling Overview

user
space
\ |
save

swtch swtch rgstore
— —

kernel

space kstack kstack kstack

shell scheduler cat

@ Xv6 performs context switch in two steps
w3 process's kernel thread to the current CPU’s scheduler thread
m the scheduler thread picks the next process for execution, and
switches to the selected process

@ Context switch is implemented in swtch.s
m void swtch(struct context **o0ld, struct context *new);

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 3/8

Scheduling Overview

Struct Conext (proc.h)

//
//
//
//
//
//
//
//

struct context {

};

Saved registers for kernel context switches. Don’t need to save all the
segment registers (Y%cs, etc), because they are constant across kernel

contexts.

Don’t need to save %eax, %ecx, %hedx, because the x86

convention is that the caller has saved them. Contexts are stored at
the bottom of the stack they describe; the stack pointer is the address
of the context. The layout of the context matches the layout of the
stack in swtch.S at the "Switch stacks" comment. Switch doesn’t save
eip explicitly, but it is on the stack and allocproc() manipulates it.

uint
uint
uint
uint
uint

edi;
esi;
ebx;
ebp;
eip;

@ Struct context normally sits at the top of the stack

w the parameters of swtch point to the top of the stack

Zhi Wang (FSU)

COP4610: Operating Systems Spring 2015 4/8

Swtch (swtch.s)

.globl swtch # Switch stacks
swtch: movl %esp, (%eax)
movl 4(%esp), %eax movl Yedx, %esp

movl 8(%esp), %edx

Save old callee-save registers # Load new callee-save registers
pushl Y%ebp popl Yedi
pushl %ebx popl Yesi
pushl %esi popl ’ebx
pushl %edi popl ’%ebp
ret

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 5/8

Scheduler

@ Each CPU has its own scheduler kernel thread (scheduler)
m each CPU executes scheduler after initialization (in mpmain)

o Context switches in Xv6 are performed in two steps
w current process —scheduler (in sched function)
m scheduler —the next process (in schduler function)

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015

6/8

Scheduler (Continued)

@ Scheduler loops through the ptable to select the next process
m 3 round-robin scheduling algorithm

@ It calls swtch to switch to the kernel thread of the next process
w kernel stack and the registers are saved and restored
w swtch returns when the running process calls sched to switch to
the scheduler

@ A process can call yield to voluntarily give up CPU
w2 running process yields to other processes in the timer interrupt
handler for preemptive scheduling (trap.c)

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 7/8

Project 2: Priority-based Schduler for Xv6

@ Goal: to implement a priority-based scheduler for Xv6

o Steps:
w add a system call to set the priority of a process (see project 1)
m change the scheduler function to select the process with the
highest priority

@ Requirements:
w correctly use the ptable lock (follow the current scheduler)
- “if there are multiple processes with the same highest priority, the
scheduler uses round-robin to execute them in turn to avoid
starvation.”

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 8/8

	Scheduling Overview

